

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶):志盛翔

DATE: (日期):2017-07-15

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GT 16V3300μF(φ13X20)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	IER	CUS	ГOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
李婷	刘渭清		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		SPECIFICAT	ALTERN	ATION HIS RECORDS	TORY		
Rev.	Date	GT SERIE Mark	ES Page	Contents	Purpose	Drafter	Approver
KCV.	Date	Widik	1 age	Contents	T urpose	Dianci	Approver

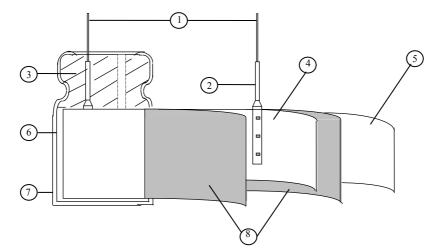
stics	ΦD ⁺ _{-0.5} F±0.5	5 β ΦD<20			the fla	t rubber	
	1						
erance Temp. range(°C)	(120Hz, Curr	kage Current rent at 105℃ 100KHz (mA_rms)	at 20°C 100kHz (Omax)	ime rs)	(mm)	фd	S1
20% -40~105	0.16 528	28 2000	0.035 100		5.0	φu 0.6	Р
	range(°C)	rance $\begin{bmatrix} 1 \text{ emp.} \\ \text{range}(^{\circ}\text{C}) \end{bmatrix}$ $\begin{pmatrix} (120\text{Hz}, & \text{Cur} \\ 20^{\circ}\text{C}) \end{pmatrix}$ $(\mu\text{A},)$	ranceTemp. range(°C)tan δ (120Hz, 20°C)Leakage Current ($\mu A, 2min$)Current at 105°C 100KHz (mA rms)	rance $\begin{bmatrix} \text{Temp.} \\ \text{range}(^{\circ}\text{C}) \end{bmatrix} \xrightarrow[20]{\text{tan } \delta} \\ \begin{array}{c} \text{Leakage} \\ (120\text{Hz}, \\ 20^{\circ}\text{C}) \end{bmatrix} \xrightarrow[(\mu \text{A}, 2\text{min})]{\text{current}} \\ \begin{array}{c} \text{Leakage} \\ \text{at } 105^{\circ}\text{C} \ 100\text{KHz} \\ (\text{mA rms}) \end{bmatrix} \xrightarrow[(\mu \text{A}, 2\text{min})]{\text{Leakage}} \\ \begin{array}{c} \text{Leakage} \\ \text{tat } 105^{\circ}\text{C} \ 100\text{KHz} \\ (\Omega\text{max}) \end{bmatrix} \xrightarrow[(\mu \text{A}, 2\text{min})]{\text{current}} \\ \begin{array}{c} \text{Ham} \text{A} \\ \text{Ham} \text{Ham} \text{A} \\ \text{Ham} $	rance $\operatorname{Temp.}_{\operatorname{range}(^{\circ}\mathbb{C})}$ $\operatorname{tan \delta}_{(120\text{Hz}, 20^{\circ}\mathbb{C})}$ Leakage $(\mu A, 2min)$ $\operatorname{Current}_{\operatorname{at 105^{\circ}\mathbb{C} 100\text{KHz}}_{(mA \text{ rms})}$ $\operatorname{at 20^{\circ}\mathbb{C}}_{100\text{kHz}}_{(mA \text{ rms})}$ $\operatorname{Load}_{\operatorname{lifetime}_{(Hrs)}}$ $\operatorname{Dox}_{D \times L}$	ranceTemp. range(°C)tan δ (120Hz, 20°C)Leakage Current (µA,2min)Current at 105°C 100KHz (mA rms)at 20°C 100kHz (Ωmax)Load Load lifetime (Hrs)Dimension (mm) $D \times L$ F	ranceTemp. range(°C)tan δ (120Hz, 20°C)Leakage Current ($\mu A, 2min$)Current at 105°C 100KHz (mA rms)at 20°C 100kHz (Ωmax)Load Load Lifetime (Hrs)Dimension (mm)D×LF ϕd

Version	01	Page	2
V CIBICII	01	1 450	

1. Application		Sheet
	n	4
2. Part Numb		4
3. Constructio		5
4. Characteris	stics	5~10
4.1 Rated voltage &	k Surge voltage	5~10
4.2 Capacitance (T	olerance)	
4.3 Leakage curren		
4.4 tan δ		
4.5 Terminal streng	gth	
4.6 Temperature cl	haracteristic	
4.7 Load life test		
4.8 Shelf life tes	t	
4.9 Surge test		
4.10 Vibration		
4.11 Solderabilit	ty test	
4.12 Resistance		
4.13 Change of t	-	
4.14 Damp heat 1	test	
4.15 Vent test	nissible (ripple current)	
	ronment-related Substances to be Controlled ('Controlled	ed 11
	pplication Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES


	This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.										
	t Numb		1 2								
12	3 4	56	3 7]	89	[10 11 12	2 13	14	1516	17
EG	<u>s 1</u>	0 5	<u>5 M</u>		<u>1 H</u>		D 1 1	<u> </u>	С	<u>SA</u>	Ρ
SERIES	GAP/		CE TO		VOLTAGE		CASE SIZE	ТҮР		SAMXON S PRODUCT LINE M	
Series	Cap(MFD)	Code	Tolerance (%)	Code	Voltage (W.V.)		Case Size	Feature	Code	SAMXON Product Li	ne
ESM EKF ESS	0.1	104	±5	J	2	0D 0E	3 B 3.5 1	Radial bulk	RR	For internal use only (The product lines	
EKS EGS EKM	0.22	224	±10	к	4 6.3	0G OJ	4 C 5 D 6.3 E	Ammo Tap	oing	we have H,A,B,C,D, E,M or 0,1,2,3,4,5,9).	
EKG EOM	0.33	334	. 45	L	8	0K 1A	8 F 10 G 12.5 I	2.0mm Pitch	Π		
EZM EZS EGF	0.47	474	±15	-	12.5 16	1B 1C	13 J 13.5 V	2.5mm Pitch	тυ		
ESF EGT	1	105	±20	м	20 25	1D 1E	14 4 14.5 A	3.5mm Pitch	т∨	Sleeve Material	Code
EGK EGE EGD	2.2	225	±30	N	30 32	11	16 K 16.5 7 18 L	5.0mm Pitch	тс	PET	Р.
EGC ERS ERF	3.3	335	-40	w	35 40	1V 1G	18.5 8 20 M 22 N	Lead Cut &	Form		
ERL	4.7	475	-20 0		42	1 M	25 O 30 P 34 W 35 Q	СВ-Туре	СВ		
ERT ERE ERD	10	106	L	A	50 57	1H 1L	35 Q 40 R	СЕ-Туре	CE		
ERH EBD	22	228	-20 +10	С	63 71	11J 1S	42 4 45 6 51 S	HE-Type	HE		
ERA ERB ERC	33	336	-20 +40	x	75 80	1T 1K	25 O 30 P 34 W 35 Q 40 R 42 4 45 6 51 S 63.5 T 76 U 80 8 90 X 100 Z	КД-Туре	КD		
EFA ENP ENH	47	476	-20 +50	s	85 90	1R 19	90 X 100 Z	FD-Type	FD	1	
ERW	100	107	-10 0	в	100 120	2A 20	Len.(mm) Code 4.5 45 5 05	ЕН-Туре	EH	1	
ELP EAP EQP	220	227	-10 +20	v	125	2B 2Z	5.4 54	PCIB Tem	nial	1	
EDP ETP EHP	330	337			160 180	2C 2P	7.7 77 10.2 T2 11 11		sw		
EUP	470	477	-10 +30	Q	200	2D	11.5 1A 12 12 12.5 1B	Snap-in	sx		
EEP EFP ESP	2200	228	-10 +50	т	215 220	22 2N	13 13 13.5 1C		sz		
EVP EGP	22000	229	+10	E	230 250	23 2E	20 20 25 25 29.5 2J	Lug	SG		
EWR EWU EWT	<u> </u>		-5 +15	F	275	2T 2I	30 30 31.5 3A 35 35		05	LL	
EWX EWF	33000	339	-5 +20	G	310 315	2R 2F	35.5 3E 50 50		06		
EWS EWH EWL	47000	479	0 +20	R	330 350	2U 2V	100 1L 105 1K		т5		
EWB VSS VNS	100000	10T	0 +30	0	360 375	2X 2Q	110 1M 120 1N 130 1P	Screw	тө		
VKS	150000	15T	0 +50	Т	385	2Y	130 1P 140 1Q 150 1R 155 1E		D5		
VRL VNH VZS	220000	227	+5 +15	z	400	2G 2M	155 1E 160 1S 165 1F		D6		
VRF	330000	33T	+5 +20	D	450	2W 2H	170 1T	L		1	
	1000000	10M	+10 +50	Ý	550 600	25 26	200 2L 215 2A				
	1500000	15M	+10 +30	н	630	2J	190 1V 200 2L 215 2A 210 2M 220 2N 240 20				
	2200000	22M	130				240 20 250 2R 260 2S 270 2T				
_	3300000	33M					270 2T				

Version 01 Page 4

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Ρασρ	5
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

WV (V.DC) 6.3 10 16 25	35 50 63	100			
SV (V.DC) 8 13 20 32	44 63 79	125			
	50 400 420 450 .00 450 470 500				
<pre><condition> Measuring Frequency : 120Hz±12Hz</condition></pre>					
Measuring Voltage : Not more than 0.5 Measuring Temperature : $20\pm 2^{\circ}C$	5Vrms				
(Tolerance) <criteria> Shall be within the specified capacitance tolerance.</criteria>					
<condition> Connecting the capacitor with a protective r minutes, and then, measure Leakage Current. <criteria> Refer to Table 1</criteria></condition>	resistor $(1k \Omega \pm 10 \Omega)$ in serie	es for			
<condition> See 4.2, Norm Capacitance, for measuring fre <criteria> Refer to Table 1</criteria></condition>	equency, voltage and temperatur	e.			
 <condition> Tensile Strength of Terminals Fixed the capacitor, applied force to the tenseconds. Bending Strength of Terminals. Fixed the capacitor, applied force to bent the 90° within 2~3 seconds, and then bent it for seconds. </condition> 	e terminal (1~4 mm from the rub r 90° to its original position with	ber) f			
Diameter of lead wire (kgf)	(kgf)				
	, , ,				
Fixed the capacitor, applied force to bent the 90° within 2~3 seconds, and then bent it for seconds.	r 90° to its original posi ce N Bending for (kgf) .) 2.5 (0.25) 5 (0.51)	tion wit ce N)			

Version	01		Page	6
---------	----	--	------	---

F

		<conditi< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></conditi<>									
		ST	STEP Testing Temperature(°C)				Time				
			1	20 ± 2	2	Time	to reach	thermal of	equilibri	um	
			2	-40(-25)	± 3	Time	to reach	thermal of	equilibri	um	
			3	20 ± 2	2	Time	to reach	thermal of	equilibri	um	
			4	$105\pm$	2	Time	to reach	thermal of	equilibri	um	
			5	20 ± 2	2	Time	to reach	thermal of	equilibri	um	
		<criteria< td=""><td>a></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></criteria<>	a>								
			shall be with			4.4The le	eakage cu	urrent me	easured s	hall not	
	Tommorotumo		n 8 times of i	-							
	Temperature characteristi		p 5, tan δ sha		nin the lin	it of Iter	n 4.4The	leakage	current	shall no	
4.6	cs		n the specific		(-)	1 11		1	£ 41. a. £ a 1	1	
		table.	°C (-25°C), in	mpedance	(z) ratio s	shall not e	exceed th	ie value (of the fol	lowing	
			Voltage (V)	6.3	10	16	25	35	50	63	
		Z-25℃	/Z+20°C	4	3	2	2	2	2	2	
		Z-40℃	/Z+20°C	8	6	4	3	3	3	3	
		Working V	Voltage (V)	100	1						
		-	/Z+20°C	2							
			/Z+20°C	3							
			citance value	> 1000 11	E 7990.	nor ano	ther 1000) u F for	7_25/7+	.20°⊂	
				~ 1000 P	r. Auu v					20 C.	
		F		> 1000 µ		-					
		-	ce, tan δ , and		Add 1.0	per anot	her 1000	μ F for 2			
		Capacitano	ce, tan δ , and on >	d impedan	Add 1.0 nce shall b	e measur	her 1000 ed at 120)µF for 2)Hz.	Z-40°C/2	Z+20°C.	
		Capacitano Conditi According	ce, tan δ , and on> g to IEC6038	d impedan 34-4No.4.	Add 1.0 nce shall b 13 method	e measur s, The ca	her 1000 ed at 120 pacitor is) µ F for 2)Hz. s stored a	Z-40°C/Z	Z+20°C.	
		Capacitano Conditi According 105°C ±	ce, tan δ , and ton> g to IEC6038 2 with DC bi	d impedan 34-4No.4. as voltage	Add 1.0 nce shall b 13 method e plus the r	b per anot e measur s, The ca ated ripp	her 1000 ed at 120 pacitor is le curren) µ F for 2)Hz. s stored a t for Tab	Z-40°C/Z	Z+20°C.	
		Capacitand Conditi According 105°C ± DC and p	ce, tan δ, and ion> g to IEC6038 2 with DC bi ripple peak	d impedan 34-4No.4. as voltage voltage sh	Add 1.0 nee shall b 13 method e plus the r nall not ex	s, The ca ated ripp	her 1000 ed at 120 pacitor is le curren e rated w) μ F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th	
	Lord	Capacitant Conditi According 105°C ± DC and product sl	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test	d impedan 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method plus the r nall not ex 6 hours rec	s, The ca ated ripp	her 1000 ed at 120 pacitor is le curren e rated w) μ F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th	
47	Load	Capacitant Conditi According 105°C ± DC and product sl	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test build meet the	d impedan 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method plus the r nall not ex 6 hours rec	s, The ca ated ripp	her 1000 ed at 120 pacitor is le curren e rated w) μ F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th	
4.7	Load life test	Capacitand <conditi According 105°C ± DC and product sl result sho <criteria< td=""><td>ce, tan δ, and fon> g to IEC6038 2 with DC bi ripple peak hould be test build meet the</td><td>d impedan 34-4No.4. as voltage voltage sh ed after 16 following</td><td>Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table:</td><td>b per anot e measur s, The ca ated ripp acceed the covering t</td><td>her 1000 ed at 120 pacitor is le curren e rated w ime at at</td><td>) μ F for 2 DHz. s stored a t for Tab yorking y</td><td>Z-40°C/Z at a temp ble 1. (T voltage)</td><td>Z+20℃. erature of he sum of Then th</td></criteria<></conditi 	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test build meet the	d impedan 34-4No.4. as voltage voltage sh ed after 16 following	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table:	b per anot e measur s, The ca ated ripp acceed the covering t	her 1000 ed at 120 pacitor is le curren e rated w ime at at) μ F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th	
4.7	life	Capacitand <conditi According 105°C ± DC and to product shown <criteria The chara</criteria </conditi 	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test build meet the a>	d impedan 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table:	s, The ca ated ripp cceed the overing t	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments.) µ F for 2 DHz. s stored a t for Tab yorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th	
4.7	life	Capacitand <conditi According 105°C ± DC and to product sho <criteria The chara</criteria </conditi 	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test build meet the a> acteristic sha	d impedan 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin	b per anot e measur s, The ca ated ripp ated ripp acceed the covering t <u>g require</u> 4.3 shall	her 1000 ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> be satisfi) µ F for 2)Hz. s stored a t for Tab vorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th	
4.7	life	Capacitand <conditi According 105°C ± DC and to product sho <criteria The chara</criteria </conditi 	ce, tan δ , and on> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a > acteristic sha akage curren pacitance Ch	d impedan 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec 9 table: e followin Value in	s, The ca ated ripp acceed the covering t g require 4.3 shall 25% of	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va) µ F for 2 DHz. s stored æ t for Tab vorking v mospher ied alue.	Z-40°C/2 at a temp ble 1. (T voltage) ic condit	Z+20℃. erature of he sum of Then th tions. Th	
4.7	life	Capacitand <conditi According 105°C ± DC and a product sho <criteria The chara Le Ca tar</criteria </conditi 	ce, tan δ , and on> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a > acteristic sha akage curren pacitance Ch	d impedan 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>+</u>	s, The ca ated ripp cceed the covering t <u>g require</u> 4.3 shall <u>25% of</u> than 200	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va 0% of the) μ F for 2 DHz. s stored a t for Tab vorking v mospher ied alue. e specifie	Z-40°C/2 at a temp ble 1. (T voltage) ic condit	Z+20℃. erature of he sum of Then th tions. Th	
4.7	life	Capacitand <Conditi According $105^{\circ}C \pm$ DC and the product slip result sho <Criteria The chara Le Ca tar Ag	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak to hould be test puld meet the a > acteristic sha takage current pacitance Ch h δ opearance	d impedan 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec 9 table: e followin Value in Within <u>+</u> Not more	s, The ca ated ripp cceed the covering t <u>g require</u> 4.3 shall <u>25% of</u> than 200	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va 0% of the) μ F for 2 DHz. s stored a t for Tab vorking v mospher ied alue. e specifie	Z-40°C/2 at a temp ble 1. (T voltage) ic condit	Z+20℃. erature of he sum of Then th tions. Th	
4.7	life	Capacitand <conditi According 105°C ± DC and to product sho <criteria The chara Le Ca tar App <conditi< td=""><td>ce, tan δ, and fon> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a> acteristic sha akage curren pacitance Ch n δ opearance</td><td>d impedan 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange</td><td>Add 1.0 nce shall b 13 method plus the r nall not ex 6 hours rec g table: e followin Value in Within <u>+</u> Not more There sha</td><td>b per anot e measur as, The ca ated ripp ated ripp acced the covering to <u>g require</u> 4.3 shall <u>25% of</u> than 200 all be no</td><td>her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va leakage c</td><td>) μ F for 2 DHz. s stored a t for Tab vorking v mospher ied alue. specifie</td><td>Z-40°C/2 at a temp ble 1. (T voltage) ic condit ed value.</td><td>z+20℃. erature of he sum of Then the tions. The</td></conditi<></criteria </conditi 	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a> acteristic sha akage curren pacitance Ch n δ opearance	d impedan 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange	Add 1.0 nce shall b 13 method plus the r nall not ex 6 hours rec g table: e followin Value in Within <u>+</u> Not more There sha	b per anot e measur as, The ca ated ripp ated ripp acced the covering to <u>g require</u> 4.3 shall <u>25% of</u> than 200 all be no	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va leakage c) μ F for 2 DHz. s stored a t for Tab vorking v mospher ied alue. specifie	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ed value.	z+20℃. erature of he sum of Then the tions. The	
4.7	life	Capacitand <conditi According 105°C ± DC and a product sho <criteria The chara Le Ca tar Age <conditi The capaci</conditi </criteria </conditi 	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a> acteristic sha akage curren pacitance Ch δ opearance	d impedan 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t nange stored wi	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec 9 table: e followin Value in Within <u>±</u> Not more There sha	b per anot e measur ated ripp ated ripp ated ripp ated ripp cceed the covering t <u>g require</u> 4.3 shall <u>25% of</u> all be no	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> be satisf <u>initial va</u> <u>0% of the</u> leakage of ed at a te) μ F for 2 DHz. s stored a t for Tab vorking v mospher ied <u>alue.</u> <u>specifie</u> of electro	Z-40°C/2 at a temp ole 1. (T voltage) ic condit ic condit	$\pm 2^{\circ}C$.	
4.7	life	Capacitant 	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test build meet the a> acteristic sha eakage curren pacitance Ch δ opearance	d impedan 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> thange stored wi lowing thi	Add 1.0 nce shall b 13 method e plus the r nall not ey 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period t	b per anot e measur ated ripp ated ripp ated ripp ceed the overing t <u>g require</u> 4.3 shall <u>25% of</u> than 200 all be no	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> be satisfi initial va 0% of the leakage of ed at a te tors shal) μ F for 2 DHz. s stored a t for Tab yorking v mospher ied alue. e specific of electro mperatur l be remo	Z-40°C/2 at a temp ole 1. (T voltage) ic condit ic condit ed value. alyte.	$2+20^{\circ}C$. erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for m the te	
4.7	life	Capacitand <Conditi According $105^{\circ}C \pm$ DC and to product slaves result sho <Criteria The chara Le Ca tar Agentic The capaci 1000+48/ chamber	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a> acteristic sha akage curren pacitance Ch δ opearance	d impedan 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> thange stored wi lowing thi yed to stal	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period th bilized at	b per anot e measur ated ripp acceed the covering t <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u> <u>all be no</u> uge applie ne capaci room ten	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal uperature	 μ F for 2 β μ F for 2 β Hz. s stored a t for Tab yorking ways ied alue. ied alue. ied especifies of electron mperature l be remove for 4~8 	Z-40°C/2 at a temp ble 1. (T voltage) ic condit condition ed value. alyte. re of 105 oved fro bours.	$2+20^{\circ}C$. erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for m the tee Next the	
4.7	life test Shelf life	Capacitand <Conditi According $105^{\circ}C \pm$ DC and the product sho <Criteria The chara Le Ca tar Agentic The capaci 1000+48/ chamber shall be ca applied for	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a> acteristic sha akage curren pacitance Ch δ opearance ion> tors are then 0 hours. Foll and be allow connected to or 30min. Aft	d impedan 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t nange stored wi lowing thi ved to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha th no volta is period th bilized at	e measur e measur s, The ca ated ripp acceed the covering t <u>g require</u> 4.3 shall <u>25% of</u> than 200 all be no age applic ne capaci room ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 μ F for 2 s stored a t for Tab y orking way of the store of the stor	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit ic condit d value. hyte. re of 105 oved fro hours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical formula for the sum of the	
	life test Shelf	Capacitand <Conditi According $105^{\circ}C \pm$ DC and a product sl result sho <Criteria The chara Le Ca tar Approximate Approximate Appro	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a> acteristic sha akage curren pacitance Ch δ opearance ion> tors are then 0 hours. Foll and be allow connected to or 30min. Aft	d impedan 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t nange stored wi lowing thi ved to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha th no volta is period th bilized at	e measur e measur s, The ca ated ripp acceed the covering t <u>g require</u> 4.3 shall <u>25% of</u> than 200 all be no age applic ne capaci room ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 μ F for 2 s stored a t for Tab y orking way of the store of the stor	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit ic condit d value. hyte. re of 105 oved fro hours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical formula for the sum of the	
	life test Shelf life	Capacitand <Conditi According $105^{\circ}C \pm$ DC and the product sho <Criteria The chara Le Ca tar Agentic The capaci 1000+48/ chamber shall be ca applied for	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a> acteristic sha akage curren pacitance Ch δ opearance ion> tors are then 0 hours. Foll and be allow connected to or 30min. Aft	d impedan 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t nange stored wi lowing thi ved to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha th no volta is period th bilized at	e measur e measur s, The ca ated ripp acceed the covering t <u>g require</u> 4.3 shall <u>25% of</u> than 200 all be no age applic ne capaci room ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 μ F for 2 s stored a t for Tab y orking way of the store of the stor	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit ic condit d value. hyte. re of 105 oved fro hours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical formula for the sum of the	
	life test Shelf life	Capacitand <Conditi According $105^{\circ}C \pm$ DC and the product sho <Criteria The chara Le Ca tar Agentic The capaci 1000+48/ chamber shall be ca applied for	ce, tan δ , and fon> g to IEC6038 2 with DC bi ripple peak hould be test ould meet the a> acteristic sha akage curren pacitance Ch δ opearance ion> tors are then 0 hours. Foll and be allow connected to or 30min. Aft	d impedan 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha th no volta is period th bilized at	e measur e measur s, The ca ated ripp acceed the covering t <u>g require</u> 4.3 shall <u>25% of</u> than 200 all be no age applic ne capaci room ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 μ F for 2 s stored a t for Tab y orking way of the store of the stor	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit ic condit d value. hyte. re of 105 oved fro hours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical formula for the sum of the	

Version 01	1	Page	,	7
------------	---	------	---	---

		<criteria></criteria>
		The characteristic shall meet the following requirements.
		Leakage current Value in 4.3 shall be satisfied
	Shelf	Capacitance Change Within $\pm 25\%$ of initial value.
4.8	life	tan δ Not more than 200% of the specified value.
	test	Appearance There shall be no leakage of electrolyte.
		Remark: If the capacitors are stored more than 1 year, the leakage current may
		increase. Please apply voltage through about 1 k Ω resistor, if necessary.
4.9	Surge test	<condition>Applied a surge voltage to the capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor. The capacitor shall be submitted to 1000 cycles, each consisting of charge of $30 \pm 5s$, followed discharge of 5 min 30s. The test temperature shall be $15\sim35^{\circ}C$. C_R :Nominal Capacitance (μ F)<criteria>Capacitance ChangeWithin $\pm 15\%$ of initial value. AppearanceAppearanceThere shall be no leakage of electrolyte.Attention: This test simulates over voltage at abnormal situation only. It is not applicable to such over voltage as often applied.</criteria></br></condition>
		over voltage as often applied.
4.10	Vibration test	<condition>The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions.Wibration frequency range: 10Hz ~ 55Hz Peak to peak amplitudePeak to peak amplitude: 1.5mm Sweep rateSweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minuteMounting method:The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket.$4mm$ or less $4mm$ or less To be solderedAfter the test, the following items shall be tested:Inner constructionNo intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes. The markings shall be legible.</br></condition>

Version	01			8
---------	----	--	--	---

r-

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		<condition> The capacitor shall be tested up</condition>	nder the following	conditions:		
		Soldering temperature	: 245±3°C			
		Dipping depth : 2mm				
4.11	Solderability test	Dipping speed	: 25±2.5mm : 3±0.5s	n/s		
	Dipping time < Criteria >	. 5±0.58				
		A minimum of 95%				
		Coating quality	immersed			
		<condition></condition>	11 h . :		5°Cf==10	
		Terminals of the capacitor shall				
		1 seconds or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0}				
	D	Then the capacitor shall be left for 1~2 hours before measuren		temperature and norma	l humidity	
4.12	Resistance to solder heat	< <u>Criteria></u>	iciit.			
4.12 solder heat test	Leakage current	Not more than t	he specified value.			
		Capacitance Change	Within $\pm 10\%$ c	of initial value.		
		tan δ	Not more than t	he specified value.		
	Appearance	There shall be n	o leakage of electrolyte	e.		
		<condition></condition>				
		Temperature Cycle:According			shall be	
		placed in an oven, the conditio	-	Time		
		Temper (1)+20℃	lature	≤ 3 Minutes		
		(1)+20 C (2)Rated low temperature	$(40^{\circ}C)(25^{\circ}C)$	30 ± 2 Minutes		
	Change of			30 ± 2 Minutes 30 ± 2 Minutes		
4.13	temperature test	(3)Rated high temperature (1) to (2)=1 cucle, total 5		30 ± 2 Willines		
	test	(1) to (3)=1 cycle, total 5 c Criteria >	cycle			
		The characteristic shall meet th	e following require	ement		
			Not more than the s]	
		tan δ	Not more than the s	specified value.		
		Appearance	There shall be no le	eakage of electrolyte.]	
		<condition></condition> Humidity Test:				
		According to IEC60384-4No.4	12 methods capa	citor shall be exposed f	for 500 ± 8	
		hours in an atmosphere of 90~	· 1	-		
		meet the following requirement		,	U	
		<criteria></criteria>			I	
4.14	Damp heat		more than the spe			
	test	1 0	$\frac{1}{20\%}$ of initiation $\frac{1}{20\%}$	al value. of the specified value.		
			ere shall be no leak	•		
					l	

Version	01	Page	9

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.15	Vent test	<condition> The following test only app with vent. D.C. test The capacitor is connected current selected from below <table 3=""> Diameter (mm) DC 22.4 or less Over 22.4</table></condition>	with its p	oolarity reve applied.			
		<criteria> The vent shall operate with pieces of the capacitor and/</criteria>		rous condit	ions such a	is flames of	r dispersion o
		Condition> The maximum permissibl at 120Hz and can be appl Table-1 The combined value of D rated voltage and shall no Frequency Multipliers: Coefficient Freq. (Hz)	ied at max 0.C voltag	kimum oper e and the pe	rating temp	erature	
	Maximum permissible	Cap. (µF) 15~33	0.45	0.55	0.70	0.90	1.00
4.16	(ripple current)	39~330 390~1000	0.60	0.70 0.75	0.85 0.90	0.95 0.98	1.00 1.00
		1200~3900	0.75	0.80	0.95	1.00	1.00

Version	01	Page	10
V CISIOII	01	1 450	10

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
ficavy metals	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
D · (1	Polybrominated biphenyls (PBB)				
Brominated	Polybrominated diphenylethers(PBDE) (including				
organic	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	pounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo con	npounds				
Formaldehyde					
Beryllium oxide					
Beryllium copp	ber				
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzoti	riazole				

Version 01		Page	11
------------	--	------	----

Attachment: Application Guidelines

1.Circuit Design

(2)

- 1.1 Operating Temperature and Frequency
 - Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 b) At human temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanb increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01 Page 12

(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification. 1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths. 1.7 The Product endurance should take the sample as the standard. 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling. 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures. CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure. 2.Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. 2.2 Capacitor Insertion (1) Verify the correct capacitance and rated voltage of the capacitor. (2) Verify the correct polarity of the capacitor before inserting. (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve. 2.4 Flow Soldering (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.

- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.
- 2.8 Mounting Adhesives and Coating Agents
 - When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures. If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
- If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte of gas is ingested by month, gargie with water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000 Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01	Page	14

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.